Industrial Ecology: Design with Nature

SESHA/DTSC

Joint Pollution Prevention Mini-Conference
5 November 2003
Gil Friend, President & CEO
Natural Logic, Inc.

Natural Logic

Building profit and competitive advantage through exceptional environmental performance

Strategy: Value generation

Strategic SustainabilityTM Consulting Strategic Supply Chain PartnershipsTM Marketing and product development CSR reporting as strategic business tool Sustainable economic development Life cycle thinking

Tools:

Metrics, Dashboards, Reporting

Business Metabolics™ benchmarking software Key Performance Indicators development CSR Reporting Power Tools EcoAudit Toolkit EQE Checklist

Design:

Collaborative Innovation

Integrative design process / charrettes Green / High performance buildings LEED training and process management Green materials research / specification Permaculture systems: design with nature Building / Site / Natural system integration

Operations:

Advanced resource productivity

Integrated EcoAudits: process efficiency Environmental Management Systems Evaluation & implementation Green building operation protocols *Profit Discovery* processes

Industrial Ecology: What it is, what it isn't, and why

- The industrial ecology concept has deep practical and intellectual roots, stretching far earlier than the oft-cited Kalundborg example.
- Considerable promise for improving economic performance while reducing industry's environmental footprint.
- Considerable challenges -- technical, entrepreneurial, some of them perhaps intrinsic to the current Eco-Industrial Development model itself -- to realizing that promise.
- Eco-Industrial Development -- the application of industrial ecology principles to industrial development and regional economic development
- Idea has captured the imagination of countless analysts and some 60 North American communities.

Context

Something has shifted

- Sustainability: Moving from gleam to mainstream
- More significant than the shift from "pollution prevention" to "pollution control"
- Transforming "environment" from a financial burden to a source of strategic business advantage
 - Process efficiency
 - Design revolution
- Transforming role of business

Why should we care?

- Resource depletion
- Pollution, health, productivity
- Life support systems: Air / Water / Food / Biodiversity / Climate
- Balance of payments
- License to operate
- Competition
- Social equity & social stability

Massive economic impacts

- Money down the drain
- Profit margins squeezed
 - uncontrolled yet avoidable resource costs
 - inefficient production processes
- Risk management diverts critical resources
- High cost & value
 - customer and employee loyalty
 - brand erosion

Energy "down the drain"

- US manufacturing
 - \$64 billion on fuels and electric energy
- US trade
 - 1999 energy imports \$44.6 billion
 - 1999 trade deficit \$218.2 billion
- US energy budget
 - \$200 billion/year national savings if we just match Japan

Materials "down the drain"

- US manufacturing
 - \$1.9 trillion on materials
- "Waste" treatment & remediation:
 - \$81.9 billion annual expenditures
- Pollution abatement:
 - \$8.4 billion capital investment for manufacturers
 - (7.5% of total capital investment)
 - \$19.2 billion operating costs
- "Total Cost of Waste" (Steven Rice)
 - 4-10 times direct (disposal) costs

Only two things...

"Waste"? No such thing!

- Contextual like weeds yet significant
- No "waste" in nature
- "Non-Product Output" adds no value to a company's customers *or* shareholders
- The U.S. economy's physical output?
 - 94% "waste"
- Accounting systems miss full costs

Enter: Industrial Ecology

Industrial Ecology: Design with Nature

- Nature's ecosystems have more than 3.5 billion years of experience evolving efficient, complex, adaptive, resilient systems.
- Why should companies reinvent the wheel, when the R&D has already been done?

- Gil Friend, 1991

History

- Benyus, Biomimicry, 1997
- Friend, EcoMimesis 1996
 - http://www.natlogic.com/resources/nbl/v05/n04.html
- Tibbs, Industrial Ecology 1992
- Various, sustainable agriculture 1970s-80s
- McHarg, Design with Nature 1972
- Van Dresser, Landscape for Humans 1940s
- Howard, An Agricultural Testament 1890s
- Indigenous agriculture

Trajectory

- Kalundborg
- EcoIndustrial Parks
- EcoIndustrial Estates
- EcoIndustrial Networks
- Zero Waste strategies

Kalundborg

- Collaboration between five industrial businesses for mutual economic and environmental benefit
 - Power plant
 - Fish farm
 - Pharmaceutical company
 - Agricultural farms

Projects

- recycling water:
- exchanging energy at different levels: waste steam, district heat
- waste products to inputs (e.g. sludge to fertilizer)

Zero waste

- Dupont reduced pollutants 80% in five years.
- "It was actually easier to motivate the 80 top managers to commit to zero emissions than it was five years ago to motivate them to commit to reduce 80% waste."
 - Edward Woolard, Chairman & CEO

Principles (or, The Story of 0)

Industrial Ecosystems: Modeling on natural ecosystems

- No waste (the output of one process becomes the input for another);
- Concentrated toxins are not stored, but synthesized as needed;
- "Elegant" cycles of materials and energy weave among the companies;
- Systems are dynamic, and information driven;
- Independent participants in coordinated action.
 - Hardin Tibbs

Program for Industrial Ecology

- Creation of industrial ecosystems
- Balancing industrial output to natural ecosystem capacity
- Dematerialization
- Improving metabolic pathways
- Systemic patterns of energy use
- Policy alignment with long-term perspective of industrial system evolution
 - Hardin Tibbs

- Understand ecosystem dynamics, and the competitive pressure for optimal efficiency of both organism and ecosystem
- Model metabolism—flows of energy and cycles of materials
- Watch boundaries and interactions
- Do more with less
- Reduce dissipative uses
- Stack functions—multi-purpose processes and components
- Shift from capital-energy to income-energy

Hardin Tibbs

- Long term optimization, rather than short-term maximization
- Maintaining and enhancing regenerative capacity
- Diversified system
 - components linked in complementary functioning (to minimize outside inputs/exports)
 - diversity of many kinds: species, spatial, structural, temporal, and trophic (Hollings)
- Multi-functional biological components minimze need for industrial inputs
- Turn "waste" into nutrients/feedstocks
- Careful attention to rates and cycles
- Match flows to needs

- [Friend 1978, Hodges 1978]

- Diverse, modular production units
- Renewable energy sources
- Variety of raw materials, multiple sources
- Leverage of Aggregate Efficiencies
- Optimal rates
- Synergism and Symbiosis

Holmes/Todd 1995

- Current solar income
- Waste equals food
- Respect diversity
 - Bill McDonough

Design Principles: Resilience criteria

- dispersion
- numerical redundancy
- functional redundancy
- optional interconnection
- flexibility
- modularity
- internal buffering
- technical simplicity and forgivingness
- easily reproducable

Material flows

- Close material loops
- Shorten loops
- Use "waste" streams
- Rich interconnections

Minimize:

- throughput
- extraction of virgin materials
- non-renewable energy
- adverse environment impacts
- persistent bioaccumulative toxics (PBTs)
- human health effects
- transport distances

Products

- Long lasting products
- More service, less product

Maximize

- Product life
- Diversity and interconnection
- Closed material loops
- Resource Efficiency
- Added value

Design principles & Key Indicators

- Low throughput
- Minimize extraction
- Minimize energy use
- Close and shorten material loops
- Rich interconnections
- Reduce
 - adverse effects to natural environment
 - non-renewable energy
 - human health effects
- Long lasting products

Metabolic Efficiency Strategies

Metabolic Efficiency Strategies: Recycling?

Metabolic Efficiency Strategies: Reduce NPO

Metabolic Efficiency Strategies: Cascading

Metabolic Efficiency Strategies: Parameters

Networks

• Closed "technical" cycles

Renewables

System Conditions for Sustainability

- Substances from the earth's crust must not systematically increase in the ecosphere.
- Substances produced by society must not systematically increase in the ecosphere.
- The physical basis for the productivity and diversity of Nature must not be systematically deteriorated.
- Resources must be used efficiently and fairly with respect to meeting human needs.
 - The Natural Step

Business MetabolicsTM

- Resource productivity trends
- Key ratios
- Throughput Pie[™]

- Internal+External Benchmarks
- Link "environmental" & business factors

The Challenge Ahead

"New industrial revolution"

- Products, services and whole businesses that reduce, eliminate or reverse impact on the environment... profitably!
- Cars that clean the air
- Factories that clean the water
- Buildings—and cities—with "zero ecological footprint"
- Companies that make more money selling *less* "stuff"
- "Making the world work for 100% of humanity"

Challenges: Industrial Ecology

Business issues

- Matching resource flows
- Reliability of supplies
- Contract design

Development issues

- Evolved vs purposive systems
- Entrepreneur vs public authority initiated

Regulatory and legal issues

- Waste or resource RCRA
- Incentives / Disincentives: pollution, waste disposal, virgin materials
- Technology standards -> peformance standards
- High-leverage, non-lethal control variables
- Zero emissions zoning

Challenges: High Tech

Issues

- Supply chain
- Ecological footprint
- Digital divide

Innovative business responses:

- HP+Noranda: Mining the "waste" stream
- HP: eInclusion
- Various: selling service
- Still waiting: the modular endless upgradeable PC

Challenges: Your customers

Innovative business responses:

- Cargill-Dow: crop-based polymer feedstocks
- DuPont: zero waste, chemical management systems
- Millennium Chemicals: new market in fuel cell production for its zirconia, use of efficient CHP
- ASG Transport: "petroleum is a strategic dead end"

The key strategic question:

"What business are we really in?

Getting From Here to There

Asking the right questions

Not "Can we?"

"How can we?"

It's all about design

Natural Logic, Inc.

Strategy. Systems. Software.

Helping companies and communities prosper by embedding the laws of nature at the heart of enterprise.

> www.NatLogic.com 1-877-NatLogic

